Newcastle
+ University

Modelling CANDO

Leo Freitas
Overture 11/06/2025, Aarhus

In collaboration with :

* Alistair Pollitt PhD Student [Njewcas‘.ttle
* Patrick Degenaar Brain pacemaker eng. (NCL) lead + niversi y

Newcastle
+ University

Motivation

* Most medical device companies are small

* CE-marking safety-critical software is tricky:
e Regulation and standards only provide guidelines

* Engineers are not trained in dependable software techniques
* Myriad of regulatory documentation

* Over 20 different standards to adhere to and address

* Lack of clarity for a pathway to certification

» Software is regulated / classified by IEC62304

e Case study selection
» Safety-critical software for a medical device
* Prior work done by Newcastle

Newcastle
+ University

Methodology

* Application of model based techniques to medical device
* Model-based formalisms for the design (i.e. FSM + properties)
* Code-level verification for C/C++ (partial/total correctness)
* Link solutions to regulatory process is crucial

* Have a direct link with risk/hazard profile
* Ensures stakeholders and regulator care about the formal result
* Enables clear demonstration of what the approach can achieve

Newcastle
+ University

Design / Verification Tools - various

* Model-based verification languages and tools
e CSP/FDR, MAL/NuSMV : risk assessment properties model checking
* VDM/Overture, Isabelle: symbolic simulation and proof of specific properties

* Code-level verification languages and tools
* Dafny/Z3, C/Frama-C : specification discovery

e Cand C++/eCv : MISRA compliance, auditable correctness proofs
—— FS ficati) Formal |
Module peciiication Specification | Can it be)
Analysis and type " ineCv venty simplified? Finish ‘
y identification | annotations [<— P) J
| \ /.]
, p N
Generate Verify Translate to ¢
VDM Model Model and eCv

N

Newcastle
Q) Lniversity

Socio-technical experiments

Infant Dialyser (NHS) Brain Pacemaker (EPSRC/CANDO)
2008 — 2017 (2014) 2014 —-2022 (2016)

©ontrol unit

(a)

Newcastle
+ University

Brain Pacemaker (mid point adoption)

* Optogenetic stimulation (i.e. electrical signal input; light signal output)

 Embedded software within the controller unit for closed-loop stimulation

* External software for wireless download diagnostic information and upload control parameters

Connection Hub

Chest Unit

(b)

1.5 External unit

2. Connective 2.1 Connection hub

& S - R
~ N if© : <
1. Chest Control Unit 30ptrode\ .. y
: Optrode 3
: 3.1 Optrode Control Syst
1.1 Battery : ptroge Lontrol system Electronics
1.2 Wireless Unit y : . :
3.2 Recording 3.3 Stimulation 3.4 Diagnostic |:
1.3 uController .' 1 H
1.4 Software : | Electrodes LEDs Sensors | :
. Optrode Fabrication (Annex 2c) /
) \ .. .)
| L |
T I
Chest Brain

Newcastle
+ University

What’s been verified?

* Verifying the optrode CMOS chip command interface API:

e Optrodes communication over SPI (Serial Peripheral Interface)
* FSM controlling low-level optrode functionality

* FSM control software implemented in C (~3KLOC) for a Freescale chip

* Verification boundaries
* Not verifying generated device-driver code (~5KLOC)
* Not verifying dependant libraries for printed hardware (~110KLOC)

FSM Visualisation

const unsigned char

VES
VES
VES
VES
VES
VES
VES
/*
/*
/*
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES
VES

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE

{
/*0-3 */
/*4-7 %/
/*8-11 */
/*12-15%/
/*16-19%/
/*20-23%/
/*24-27%/
/*28-31%/
/*32-35%/
}

{// TOUT CONT
@ %/ 1, 1,
1 %/ 1, 2,
2 %/ 2, 3,
3 %/ 3, 4,
4 */ 4, 4,
5 %/ 5, 4,
6 */ 6, 7,
7 %/ 7, 1,
8 %/ 8, A4,
9 %/ 9, 7,
10 */ 1@, 1o,
11 */ 11, 4,
) £ AR, 4
13 %/ 13, 4,
14 %/ 14, 14,
15 %/ 15, 15,
16 */ 16, 4,
17 %/ 17, 4,
18 */ 18, 4,
19 %/ 19, 4,
20 %/ 20, 4,
21 %/ 21, 4,
22 %/ 22, 4,
23 %/ 23, 4,
24 %/ 24, 25,
25 %/ 25, 25,
26 %/ 26, 25,
27 %/ 21, 25,
28 %/ 28, 32,
29 %/ 29, 8,
30 x/ 3@, 11,
31 %/ 31, 16,
SR Ay 9
L

&start,
&send_packet,
&set_sDAC,
&LED_all_off,
&prog_op_mem_2,
&set_ana,
&read_LED,
&receive_packet,
&cmd_finish

ERROR SPI_TX_FINISH
32, e,
32, il
32, 7
32, 3,
32, 28,
32, 5,
32, 6,
32, 29,
32, 8,
32, 9,
32, 30,
32, 11,
32, 12,
32, 13,
32, 14,
32, 31,
32, 16,
B0 17,
32, 18,
32, 19,
32, 20,
3o 21,
32, 22,
32, 23,
32, 24,
3o 28,
32, 26,
32, 27,
32, 28,
32, 29,
32, 30,
32, 31,
32, 32,

/* State transition table */
MANUAL_STATE_TABLE [OPTRODE_CMD_STATES] [OPTRODE_CMD_EVENTS] =

&idle,

&LED_on,
&set_bre,
&prog_delay_diag,
&run_mem,
&config_rec,
&send_packet,
&receive_packet,

SPI_RX_FINISH
0,

~NoOU R WN R

void (xMANUAL_STATE_ADD [OPTRODE_CMD_STATES]) (void) =

&get_cmd,
&set_vLED,
&send_packet,
&prog_op_mem_1,
&prog_clk_cnt,
&prog_ID,
&read_diag,
&receive_packet,

Newcastle
University

LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E PROG_DELAY_DIAG_E

o, o, Q, 0, 9, READ_DIAG READ_LFP GET_CMD

1, iy 1, 1, iy 9, 9, e, // start

By 6, 9, 12, 13, iy iy 1, // idle

=y £ 3R 35 3, 26, 2 2, // get_cmd

4, 4, 4, 4, 4, 3, 3, 2, // LED_off

5 S5 o 5, 5 4, 4, 2, // send_packet

6, 6, 6, 6, 6, 5, S 2, // LED_on

i i, i Ty 7 6, 6, 2, // set_vLED

8, 8, 8, 8, 8, 75 7. 2, // send_packet

9, 9, 9, 9, 9, 8, 8, 2, // set_sDAC

10, 10, 10, 10, 10, 9, 9, 2, // set_bre

11, 11, 11, 11, 11, 10, 10, 2, // send_packet

12, 12, 12, 12, 173, 11, 11, 2, // set_dDAC

13, iE, 13, 13, 13, 12, 12, 2, // LED_all_off

14, 14, 14, 14, 14, 13, 13, 2, // prog_delay_diag

15, 15, 15, 15, 115, 14, 14, 2, // prog_op_mem_1

16, 16, 16, 16, 16, 13y 15, 2, // send_packet

17, 77y 17, 17, 17, 16, 16, 2, // prog_op_mem_2

18, 18, 18, 18, 18, iy 17, 2, // run_mem

19, 19, 19, 19, 19, 18, 18, 2, // prog_clk_cnt

20, 20, 29, 20, 20, 19, 19, 2, // reset_ana

21, 21, 21, 21, 21, 20, 20, 2, // set_ana

2 22, 2 2 77, 21, 21, 2, [// config_rec

288 23, 2 2y 2, 7y 22, 2, // prog_ID

24, 24, 24, 24, 24, 7Eip 2l 2, // dummy

258 250 250 25 73, 24, 24, 2, // read_LED

26, 26, 26, 26, 26, 2y 25, 2, // send_packet

27 g 27, 27, 27, 26, 26, 2, // read_diag

28, 28, 28, 28, 28, 27, 2 2, // read_LFP

29, 29, 29, 29, 29, 28, 28, 2, // receive_packet

30, 3e, 30, 30, 30, 29, 29, 2, // receive_packet

31, 31, 31, Sl 2l 3e, 30, 2, // receive_packet

32, By 32, 32, 32, 31, 31, 2, // receive_packet
32, 32, 32 // cmd_finish

&LED_off,

&send_packet,

&set_dDAC,

&send_packet,
&reset_ana,
&dummy ,
&read_LFP,
&receive_packet,

FSM Vis

ualisatio

ALL STATES CAN
ENTER ERROR

Newcastle
-

SPI_TX_FINISH

SPI_RX_FINISH

31-error
com 0-Start
GET_CMD
SPI_TX_FINISH
CONT CONT
ONALL EVENTS
CONT
1-get_cmd
SPI_RX_FINISH
CC]NT
I I | | l SET. II\NA E CONFIGI REC_E PROG_ID_E I | |
CONT LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E PROG_DEIAV_DIAG#E PRQG_OP_MEM_E RUN_MEM_E PROG_CLK CNT E RESET_ANAE _ANA_| _REC_| 1D_ DUMMY_E RED_LED_E READ_DIAG_E READ_LFP_E
2-LED_off 4-LED_on 5-set vLED 8 -set_bre 11-LED_all_off 12 - prog_delay_diag 16 - run_mem 17 - prog_clk_cnt 18 -reset_ana 19-set_ana 20 - config_rec 21-prog_ID 22 - dummy 23-read-LED 25 - read_diag 26 -read_LFP
CONT CONT CONT
CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT
24 - send_packet
SP_TX_FINISH
SPI_TX_FINISH
6 - send_packet 9 - send_packet
SPI_TX_FINISH CONT
CTT CTT
SPIRX _FINSH | 28 - receive_packet 29 - receive_packet
T T SPI_RX_FINISH
C0+NT ctiNT
7-set_sDac 10 - set_dDac
CONT CONT

33 - cmd_finish

Newcastle

3-send_packet

SPI_TX_FINISH
CONT

27 - receive_packet

SPI_RX_FINISH

CONT

33 -cmd_finish

ALL STATES CAN
ENTER ERROR
L} L} [] 31-error
0- Start
GET_CMD
coNT SONE
1-get_cmd GET_CHMD
o)
| | | \ | | ET. l ONFI EC_E O l | | |
CONT LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E PROG_DELAY_DIAG_E PROG_OP_MEM_E RUN_MEM_E PROG_CLK_CNT_E ~ RESET_ANAE SET_ANA_E CONFIG_REC_ PROG_ID_E DUMMY_E RED_LED_E READ_DIAG_E READ_LFP_E
2-LED_off 4-LED_on 5-set VLED 8-set_bre 11 - LED_all_off 12 - prog_delay_diag 16 - run_mem 17 - prog_clk_cnt 18 -reset_ana 19-set_ana 20 - config_rec 21-prog_ID 22 - dummy 23 -read-LED 25-read_diag 26 -read_LFP
CONT CONT CONT
CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT
24 - send_packet
SPILTXFINISH SPI_TX_FINISH SPLTX_FINSH
6 - send_packet 9 - send_packet J:’
SPI_TX_FINISH ‘ CONT
CONT CONT CONT
SPLRX_FINISH,
SPLRX _FINSH | 28 - receive_packet 29- renelve_packet]:l
T T 'SPI_RX_FINISH
czim’ coin' CONT
7 - set_sDac 10 - set_dDac
CONT CONT
CONT

Newcastle
+ University

FSM Verification

* Modelled the FSM a map from event to state to state

* Abstracted away from the C implementation details
* Invariants are not as fiddly as in C code annotations
* Translated back to eCv annotations to verify the C code

State 2

State 2 State 4

I
Duiog:

* Modelling done in VDM [e]

* Symbolic simulation, 98% coverage, QC, Isabelle proof _
« 1053LOC VDM, 45-50 FSM invariants, 272P0s

State n State 6

* Original effort had 136 POs (2019 POG), 10 QC failed!
Provable 93 (34%)
Maybe 147 (54%)

* Implemented optrode CMOS chip command-set APIs
 The model can simulate executions of the FSM loop SMENEEEE | &2 (),
* Independent of hardware, which is fiddly and hard to debug Failed 0
 Whole APl simulation only one (main) command path proof.

Newcastle
+ University

Finite State Machine (FSM) Analysis

* FSM invariants led to rearrangement of VDM operations from C.
* |dentified unreachable states in C + incorrect/inadequate transitions.

* Examples of identified invariants:

e Send and receive states must transition to themselves on transmission finish
events — ensure all bytes of the packets are processed

* Packet creation states must go to a send state on a continue event — if they
don’t, the packet can be overwritten by another packet creation state.

* Receive packet states must go to the command finished or a stage 2 packet
creation state — command is either finished or a new packet must be created

e Simulated system satisfied these invariants.

Newcastle
+ University

eCv Verification of C FSM

Translated VDM to eCv annotations to verify the C code

Verifying the FSM in C (2 versions): (value.ny_event == SPI_TX_FINISH =>
(forall x in all states :-
((x in send states e(vset) =»
° Column Stl’UCt Column . (value.transitions[x] == x))
- invariants in terms of events st (00t s sttes st e
ransimons -
)
- event -> (state -> state))

(check_if send_state(value.my_state) =»

((check_if_ receive state{value.transitions[CONT]))
Row &&

¢ ROW StrUCt {(value.transitions[SPI_TX_FINISH] == walue.my_state))
: : : my_state a& : e
- invariants in terms of states transitions| (forall x in value.transitions. indices :-
_ State _> (event _> State) (x !'= CONT &8& x != SPI_TX_FINISH) =>
} {(value.transitions[x] == error_s)

e FSM Table is then constructed as an array of columns or rows

FSM Data Packet Construction

* Several progressive iterations and steps to discharge C POs:

Newcastle
+ University

* Remove errors produced during verification

Communication Packet - 24 bits

* Discharge further verification conditions T —
* Simplify the verification process 6 bits

Command:
6 bits

Data:
12 bits

* Original package assembly contained own bit-vector expression, e.g.:

Packet = ((((addr & BITS 6) << 18) | ((cmd & BITS 6) << 12) | (data & MASK)) & BITS 24);

Newcastle
+ University
// Hardware instruction: binary package construction

inline packet_t assemble packet(const bits 6 t addr, const bits 6 t cmd, const bits 12 t data)
ghost(const packet_data_t data_length ghost)

pre (range_check(DATA LOW, data_length ghost, data))
post (result == (((addr << ADDR_SHIFT) | (cmd << CMD_SHIFT) | data) & BITS 24))

{
unsigned long packet _assembly =
(assemble_packet addr(addr) |
assemble packet cmd(cmd) |
assemble_packet_data(data) ghost(data_length_ghost));
return (packet_t) (packet assembly & BITS 24);
) * Led to reduction from 64 to 8 C POs

per packet construction
inline packet_t assemble packet addr(const bits 6 _t addr) const

pre (range_check(ADDR_LOW, ADDR_HIGH, (addr << ADDR_SHIFT))) Verification effort decrease

post (range_check(ADDR_LOW, ADDR_HIGH, result)) (e.g. 6K to 460 C POs)
post (result == old addr << ADDR_SHIFT)
{ return ((packet t)addr << ADDR SHIFT); } * Less POs due to lesser up/down casts

Newcastle
+ University

Timeline
Inception Design Rodent Trials
(2014-2015) (2014-2018) (2017-2018)

% 6 '\ Primate Trials Human Trials
@ontrol unit Ny f"’k‘ ‘ (2019) (2020)

Newcastle
+ University

Conclusion

* Need to be careful not to be lost in translation
* Model-based formalisms for the design (i.e. FSM + properties)
* Code-level verification for C/C++ (partial/total correctness)
* VDM was crucial to identify hidden invariants from the C code
e “Killer” C errors discovered early (using VDM and Isabelle)

* Socio technical experiments
* Early adoption brings more benefits
* Important to have regulator/notified body on-side
* Link solutions to regulatory process is crucial

	Slide 1: Modelling CANDO
	Slide 2: Motivation
	Slide 3: Methodology
	Slide 4: Design / Verification Tools - various
	Slide 5: Socio-technical experiments
	Slide 6: Brain Pacemaker (mid point adoption)
	Slide 7: What’s been verified?
	Slide 8: FSM Visualisation
	Slide 9: FSM Visualisation
	Slide 10: FSM Visualisation
	Slide 11: FSM Verification
	Slide 13: Finite State Machine (FSM) Analysis
	Slide 14
	Slide 15: FSM Data Packet Construction
	Slide 16
	Slide 17: Timeline
	Slide 18: Conclusion

