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Motivation

* Most medical device companies are small

* CE-marking safety-critical software is tricky:
e Regulation and standards only provide guidelines

* Engineers are not trained in dependable software techniques
* Myriad of regulatory documentation

* Over 20 different standards to adhere to and address

* Lack of clarity for a pathway to certification

» Software is regulated / classified by IEC62304

e Case study selection
» Safety-critical software for a medical device
* Prior work done by Newcastle
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Methodology

* Application of model based techniques to medical device
* Model-based formalisms for the design (i.e. FSM + properties)
* Code-level verification for C/C++ (partial/total correctness)
* Link solutions to regulatory process is crucial

* Have a direct link with risk/hazard profile
* Ensures stakeholders and regulator care about the formal result
* Enables clear demonstration of what the approach can achieve
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Design / Verification Tools - various

* Model-based verification languages and tools
e CSP/FDR, MAL/NuSMV : risk assessment properties model checking
* VDM/Overture, Isabelle: symbolic simulation and proof of specific properties

* Code-level verification languages and tools
* Dafny/Z3, C/Frama-C : specification discovery

e Cand C++/eCv : MISRA compliance, auditable correctness proofs
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Socio-technical experiments

Infant Dialyser (NHS) Brain Pacemaker (EPSRC/CANDO)
2008 — 2017 (2014) 2014 —-2022 (2016)

©ontrol unit
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Brain Pacemaker (mid point adoption)

* Optogenetic stimulation (i.e. electrical signal input; light signal output)

 Embedded software within the controller unit for closed-loop stimulation

* External software for wireless download diagnostic information and upload control parameters

Connection Hub

Chest Unit

(b)
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What’s been verified?

* Verifying the optrode CMOS chip command interface API:

e Optrodes communication over SPI (Serial Peripheral Interface)
* FSM controlling low-level optrode functionality

* FSM control software implemented in C (~3KLOC) for a Freescale chip

* Verification boundaries
* Not verifying generated device-driver code (~5KLOC)
* Not verifying dependant libraries for printed hardware (~110KLOC)



FSM Visualisation
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STATE
STATE
STATE
STATE
STATE
STATE
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{
/*0-3  */
/*4-7 %/
/*8-11 */
/*12-15%/
/*16-19%/
/*20-23%/
/*24-27%/
/*28-31%/
/*32-35%/
}

{// TOUT CONT
@ %/ 1, 1,
1 %/ 1, 2,
2 %/ 2, 3,
3 %/ 3, 4,
4 */ 4, 4,
5 %/ 5, 4,
6 */ 6, 7,
7 %/ 7, 1,
8 %/ 8, A4,
9 %/ 9, 7,
10 */ 1@, 1o,
11 */ 11, 4,
) £ AR, 4
13 %/ 13, 4,
14 %/ 14, 14,
15 %/ 15, 15,
16 */ 16, 4,
17 %/ 17, 4,
18 */ 18, 4,
19 %/ 19, 4,
20 %/ 20, 4,
21 %/ 21, 4,
22 %/ 22, 4,
23 %/ 23, 4,
24 %/ 24, 25,
25 %/ 25, 25,
26 %/ 26, 25,
27 %/ 21, 25,
28 %/ 28, 32,
29 %/ 29, 8,
30 x/ 3@, 11,
31 %/ 31, 16,
SR Ay 9
L

&start,
&send_packet,
&set_sDAC,
&LED_all_off,
&prog_op_mem_2,
&set_ana,
&read_LED,
&receive_packet,
&cmd_finish

ERROR  SPI_TX_FINISH
32, e,
32, il
32, 7
32, 3,
32, 28,
32, 5,
32, 6,
32, 29,
32, 8,
32, 9,
32, 30,
32, 11,
32, 12,
32, 13,
32, 14,
32, 31,
32, 16,
B0 17,
32, 18,
32, 19,
32, 20,
3o 21,
32, 22,
32, 23,
32, 24,
3o 28,
32, 26,
32, 27,
32, 28,
32, 29,
32, 30,
32, 31,
32, 32,

/* State transition table */
MANUAL_STATE_TABLE [OPTRODE_CMD_STATES] [OPTRODE_CMD_EVENTS] =

&idle,

&LED_on,
&set_bre,
&prog_delay_diag,
&run_mem,
&config_rec,
&send_packet,
&receive_packet,

SPI_RX_FINISH
0,

~NoOU R WN R

void (xMANUAL_STATE_ADD [OPTRODE_CMD_STATES] ) (void) =

&get_cmd,
&set_vLED,
&send_packet,
&prog_op_mem_1,
&prog_clk_cnt,
&prog_ID,
&read_diag,
&receive_packet,
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LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E PROG_DELAY_DIAG_E

o, o, Q, 0, 9, READ_DIAG READ_LFP GET_CMD

1, iy 1, 1, iy 9, 9, e, // start

By 6, 9, 12, 13, iy iy 1, // idle

=y £ 3R 35 3, 26, 2 2, // get_cmd

4, 4, 4, 4, 4, 3, 3, 2, // LED_off

5 S5 o 5, 5 4, 4, 2, // send_packet

6, 6, 6, 6, 6, 5, S 2, // LED_on

i i, i Ty 7 6, 6, 2, // set_vLED

8, 8, 8, 8, 8, 75 7. 2, // send_packet

9, 9, 9, 9, 9, 8, 8, 2, // set_sDAC

10, 10, 10, 10, 10, 9, 9, 2, // set_bre

11, 11, 11, 11, 11, 10, 10, 2, // send_packet

12, 12, 12, 12, 173, 11, 11, 2, // set_dDAC

13, iE, 13, 13, 13, 12, 12, 2, // LED_all_off

14, 14, 14, 14, 14, 13, 13, 2, // prog_delay_diag

15, 15, 15, 15, 115, 14, 14, 2, // prog_op_mem_1

16, 16, 16, 16, 16, 13y 15, 2, // send_packet

17, 77y 17, 17, 17, 16, 16, 2, // prog_op_mem_2

18, 18, 18, 18, 18, iy 17, 2, // run_mem

19, 19, 19, 19, 19, 18, 18, 2, // prog_clk_cnt

20, 20, 29, 20, 20, 19, 19, 2, // reset_ana

21, 21, 21, 21, 21, 20, 20, 2, // set_ana

2 22, 2 2 77, 21, 21, 2, [// config_rec

288 23, 2 2y 2, 7y 22, 2, // prog_ID

24, 24, 24, 24, 24, 7Eip 2l 2, // dummy

258 250 250 25 73, 24, 24, 2, // read_LED

26, 26, 26, 26, 26, 2y 25, 2, // send_packet

27 g 27, 27, 27, 26, 26, 2, // read_diag

28, 28, 28, 28, 28, 27, 2 2, // read_LFP

29, 29, 29, 29, 29, 28, 28, 2, // receive_packet

30, 3e, 30, 30, 30, 29, 29, 2, // receive_packet

31, 31, 31, Sl 2l 3e, 30, 2, // receive_packet

32, By 32, 32, 32, 31, 31, 2, // receive_packet
32, 32, 32 // cmd_finish

&LED_off,

&send_packet,

&set_dDAC,

&send_packet,
&reset_ana,
&dummy ,
&read_LFP,
&receive_packet,
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ALL STATES CAN
ENTER ERROR
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SPI_TX_FINISH

SPI_RX_FINISH

31-error
com 0-Start
GET_CMD
SPI_TX_FINISH
CONT CONT
ONALL EVENTS
CONT
1-get_cmd
SPI_RX_FINISH
CC]NT
I I | | l SET. II\NA E CONFIGI REC_E PROG_ID_E I | |
CONT LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E PROG_DEIAV_DIAG#E PRQG_OP_MEM_E RUN_MEM_E PROG_CLK CNT E  RESET_ANAE _ANA_| _REC_|  1D_ DUMMY_E RED_LED_E READ_DIAG_E READ_LFP_E
2-LED_off 4-LED_on 5-set vLED 8 -set_bre 11-LED_all_off 12 - prog_delay_diag 16 - run_mem 17 - prog_clk_cnt 18 -reset_ana 19-set_ana 20 - config_rec 21-prog_ID 22 - dummy 23-read-LED 25 - read_diag 26 -read_LFP
CONT CONT CONT
CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT
24 - send_packet
SP_TX_FINISH
SPI_TX_FINISH
6 - send_packet 9 - send_packet
SPI_TX_FINISH CONT
CTT CTT
SPIRX _FINSH | 28 - receive_packet 29 - receive_packet
T T SPI_RX_FINISH
C0+NT ctiNT
7-set_sDac 10 - set_dDac
CONT CONT

33 - cmd_finish
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3-send_packet

SPI_TX_FINISH
CONT

27 - receive_packet

SPI_RX_FINISH

CONT

33 -cmd_finish

ALL STATES CAN
ENTER ERROR
L} L} [ ] 31-error
0- Start
GET_CMD
coNT SONE
1-get_cmd GET_CHMD
o)
| | | \ | | ET. l ONFI EC_E O l | | |
CONT LED_ON_E SET_VLED_E SET_BRE_E LED_ALL_OFF_E  PROG_DELAY_DIAG_E PROG_OP_MEM_E RUN_MEM_E PROG_CLK_CNT_E ~ RESET_ANAE SET_ANA_E CONFIG_REC_ PROG_ID_E DUMMY_E RED_LED_E READ_DIAG_E READ_LFP_E
2-LED_off 4-LED_on 5-set VLED 8-set_bre 11 - LED_all_off 12 - prog_delay_diag 16 - run_mem 17 - prog_clk_cnt 18 -reset_ana 19-set_ana 20 - config_rec 21-prog_ID 22 - dummy 23 -read-LED 25-read_diag 26 -read_LFP
CONT CONT CONT
CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT CONT
24 - send_packet
SPILTXFINISH SPI_TX_FINISH SPLTX_FINSH
6 - send_packet 9 - send_packet J:’
SPI_TX_FINISH ‘ CONT
CONT CONT CONT
SPLRX_FINISH,
SPLRX _FINSH | 28 - receive_packet 29- renelve_packet]:l
T T 'SPI_RX_FINISH
czim’ coin' CONT
7 - set_sDac 10 - set_dDac
CONT CONT
CONT
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FSM Verification

* Modelled the FSM a map from event to state to state

* Abstracted away from the C implementation details
* Invariants are not as fiddly as in C code annotations
* Translated back to eCv annotations to verify the C code

State 2

State 2 State 4

I
Duiog:

* Modelling done in VDM [ e ]

* Symbolic simulation, 98% coverage, QC, Isabelle proof _
« 1053LOC VDM, 45-50 FSM invariants, 272P0s

State n State 6

* Original effort had 136 POs (2019 POG), 10 QC failed!
Provable 93 (34%)
Maybe 147 (54%)

* Implemented optrode CMOS chip command-set APIs
 The model can simulate executions of the FSM loop SMENEEEE | &2 (),
* Independent of hardware, which is fiddly and hard to debug Failed 0
 Whole APl simulation only one (main) command path proof.
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Finite State Machine (FSM) Analysis

* FSM invariants led to rearrangement of VDM operations from C.
* |dentified unreachable states in C + incorrect/inadequate transitions.

* Examples of identified invariants:

e Send and receive states must transition to themselves on transmission finish
events — ensure all bytes of the packets are processed

* Packet creation states must go to a send state on a continue event — if they
don’t, the packet can be overwritten by another packet creation state.

* Receive packet states must go to the command finished or a stage 2 packet
creation state — command is either finished or a new packet must be created

e Simulated system satisfied these invariants.
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eCv Verification of C FSM

Translated VDM to eCv annotations to verify the C code

Verifying the FSM in C (2 versions): (value.ny_event == SPI_TX_FINISH =>
(forall x in all states :-
((x in send states e(vset) =»
° Column Stl’UCt Column . (value.transitions[x] == x))
- invariants in terms of events st (00t s sttes st e
ransimons -
)
- event -> (state -> state) )

(check_if send_state(value.my_state) =»

((check_if_ receive state{value.transitions[CONT]))
Row &&

¢ ROW StrUCt {(value.transitions[SPI_TX_FINISH] == walue.my_state))
: : : my_state a& : e
- invariants in terms of states transitions| (forall x in value.transitions. indices :-
_ State _> (event _> State) (x !'= CONT &8& x != SPI_TX_FINISH) =>
} {(value.transitions[x] == error_s )

e FSM Table is then constructed as an array of columns or rows



FSM Data Packet Construction

* Several progressive iterations and steps to discharge C POs:
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* Remove errors produced during verification

Communication Packet - 24 bits

* Discharge further verification conditions T —
* Simplify the verification process 6 bits

Command:
6 bits

Data:
12 bits

* Original package assembly contained own bit-vector expression, e.g.:

Packet = ((((addr & BITS 6) << 18) | ((cmd & BITS 6) << 12) | (data & MASK)) & BITS 24);
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// Hardware instruction: binary package construction

inline packet_t assemble packet(const bits 6 t addr, const bits 6 t cmd, const bits 12 t data)
ghost(const packet_data_t data_length ghost)

pre (range_check(DATA LOW, data_length ghost, data))
post ( result == (((addr << ADDR_SHIFT) | (cmd << CMD_SHIFT) | data ) & BITS 24))

{
unsigned long packet _assembly =
(assemble_packet addr(addr) |
assemble packet cmd(cmd) |
assemble_packet_data(data) ghost(data_length_ghost));
return (packet_t) (packet assembly & BITS 24);
) * Led to reduction from 64 to 8 C POs

per packet construction
inline packet_t assemble packet addr(const bits 6 _t addr) const

pre (range_check(ADDR_LOW, ADDR_HIGH, (addr << ADDR_SHIFT))) Verification effort decrease

post (range_check(ADDR_LOW, ADDR_HIGH, result)) (e.g. 6K to 460 C POs)
post (result == old addr << ADDR_SHIFT)
{ return ((packet t)addr << ADDR SHIFT); } * Less POs due to lesser up/down casts
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Timeline
Inception Design Rodent Trials
(2014-2015) (2014-2018) (2017-2018)

% 6 '\ Primate Trials Human Trials
@ontrol unit Ny f"’k‘ ‘ (2019) (2020)
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Conclusion

* Need to be careful not to be lost in translation
* Model-based formalisms for the design (i.e. FSM + properties)
* Code-level verification for C/C++ (partial/total correctness)
* VDM was crucial to identify hidden invariants from the C code
e “Killer” C errors discovered early (using VDM and Isabelle)

* Socio technical experiments
* Early adoption brings more benefits
* Important to have regulator/notified body on-side
* Link solutions to regulatory process is crucial
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