
Modelling CANDO

Leo Freitas

Overture 11/06/2025, Aarhus

In collaboration with :

• Alistair Pollitt PhD Student

• Patrick Degenaar Brain pacemaker eng. (NCL) lead

Motivation

• Most medical device companies are small

• CE-marking safety-critical software is tricky:
• Regulation and standards only provide guidelines
• Engineers are not trained in dependable software techniques

• Myriad of regulatory documentation
• Over 20 different standards to adhere to and address
• Lack of clarity for a pathway to certification
• Software is regulated / classified by IEC62304

• Case study selection
• Safety-critical software for a medical device
• Prior work done by Newcastle

Methodology

• Application of model based techniques to medical device
• Model-based formalisms for the design (i.e. FSM + properties)

• Code-level verification for C/C++ (partial/total correctness)

• Link solutions to regulatory process is crucial

• Have a direct link with risk/hazard profile
• Ensures stakeholders and regulator care about the formal result

• Enables clear demonstration of what the approach can achieve

Design / Verification Tools - various

• Model-based verification languages and tools
• CSP/FDR, MAL/NuSMV : risk assessment properties model checking

• VDM/Overture, Isabelle : symbolic simulation and proof of specific properties

• Code-level verification languages and tools
• Dafny/Z3, C/Frama-C : specification discovery

• C and C++/eCv : MISRA compliance, auditable correctness proofs

Socio-technical experiments

Infant Dialyser (NHS)
2008 – 2017 (2014)

Brain Pacemaker (EPSRC/CANDO)
2014 – 2022 (2016)

Brain Pacemaker (mid point adoption)

• Optogenetic stimulation (i.e. electrical signal input; light signal output)

• Embedded software within the controller unit for closed-loop stimulation

• External software for wireless download diagnostic information and upload control parameters

What’s been verified?

• Verifying the optrode CMOS chip command interface API:
• Optrodes communication over SPI (Serial Peripheral Interface)

• FSM controlling low-level optrode functionality

• FSM control software implemented in C (~3KLOC) for a Freescale chip

• Verification boundaries
• Not verifying generated device-driver code (~5KLOC)

• Not verifying dependant libraries for printed hardware (~110KLOC)

FSM Visualisation

FSM Visualisation

FSM Visualisation

FSM Verification

• Modelled the FSM a map from event to state to state
• Abstracted away from the C implementation details
• Invariants are not as fiddly as in C code annotations
• Translated back to eCv annotations to verify the C code

• Modelling done in VDM
• Symbolic simulation, 98% coverage, QC, Isabelle proof
• 1053LOC VDM, 45-50 FSM invariants, 272POs
• Original effort had 136 POs (2019 POG), 10 QC failed!

• Implemented optrode CMOS chip command-set APIs
• The model can simulate executions of the FSM loop
• Independent of hardware, which is fiddly and hard to debug
• Whole API simulation only one (main) command path proof.

PO Type Total (272)

Provable 93 (34%)

Maybe 147 (54%)

Unchecked 32 (12%)

Failed 0

Finite State Machine (FSM) Analysis

• FSM invariants led to rearrangement of VDM operations from C.

• Identified unreachable states in C + incorrect/inadequate transitions.

• Examples of identified invariants:
• Send and receive states must transition to themselves on transmission finish

events – ensure all bytes of the packets are processed

• Packet creation states must go to a send state on a continue event – if they
don’t, the packet can be overwritten by another packet creation state.

• Receive packet states must go to the command finished or a stage 2 packet
creation state – command is either finished or a new packet must be created

• Simulated system satisfied these invariants.

Translated VDM to eCv annotations to verify the C code

Verifying the FSM in C (2 versions):

• Column struct

– invariants in terms of events

– event -> (state -> state)

• Row struct

– invariants in terms of states

– state -> (event -> state)

• FSM Table is then constructed as an array of columns or rows

eCv Verification of C FSM

FSM Data Packet Construction

• Several progressive iterations and steps to discharge C POs:
• Remove errors produced during verification

• Discharge further verification conditions

• Simplify the verification process

• Original package assembly contained own bit-vector expression, e.g.:

 Packet = ((((addr & BITS_6) << 18) | ((cmd & BITS_6) << 12) | (data & MASK)) & BITS_24);

// Hardware instruction: binary package construction

inline packet_t assemble_packet(const bits_6_t addr, const bits_6_t cmd, const bits_12_t data)
 ghost(const packet_data_t data_length_ghost)

pre (range_check(DATA_LOW, data_length_ghost, data))

post (result == (((addr << ADDR_SHIFT) | (cmd << CMD_SHIFT) | data) & BITS_24))

{

 unsigned long packet_assembly =

 (assemble_packet_addr(addr) |
 assemble_packet_cmd(cmd) |
 assemble_packet_data(data) ghost(data_length_ghost));

 return (packet_t) (packet_assembly & BITS_24);

}

inline packet_t assemble_packet_addr(const bits_6_t addr) const

pre (range_check(ADDR_LOW, ADDR_HIGH, (addr << ADDR_SHIFT)))

post (range_check(ADDR_LOW, ADDR_HIGH, result))

post (result == old addr << ADDR_SHIFT)

{ return ((packet_t)addr << ADDR_SHIFT); }

• Led to reduction from 64 to 8 C POs
per packet construction

• Verification effort decrease
(e.g. 6K to 460 C POs)

• Less POs due to lesser up/down casts

Timeline

Design
(2014-2018)

Inception
(2014-2015)

Rodent Trials
(2017-2018)

Primate Trials
(2019)

Human Trials
(2020)

Conclusion

• Need to be careful not to be lost in translation
• Model-based formalisms for the design (i.e. FSM + properties)

• Code-level verification for C/C++ (partial/total correctness)

• VDM was crucial to identify hidden invariants from the C code

• “Killer” C errors discovered early (using VDM and Isabelle)

• Socio technical experiments
• Early adoption brings more benefits

• Important to have regulator/notified body on-side

• Link solutions to regulatory process is crucial

	Slide 1: Modelling CANDO
	Slide 2: Motivation
	Slide 3: Methodology
	Slide 4: Design / Verification Tools - various
	Slide 5: Socio-technical experiments
	Slide 6: Brain Pacemaker (mid point adoption)
	Slide 7: What’s been verified?
	Slide 8: FSM Visualisation
	Slide 9: FSM Visualisation
	Slide 10: FSM Visualisation
	Slide 11: FSM Verification
	Slide 13: Finite State Machine (FSM) Analysis
	Slide 14
	Slide 15: FSM Data Packet Construction
	Slide 16
	Slide 17: Timeline
	Slide 18: Conclusion

